

Friday 6 June 2014 – Afternoon

AS GCE MATHEMATICS

4732/01 Probability & Statistics 1

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4732/01
- List of Formulae (MF1)

Duration: 1 hour 30 minutes

Other materials required: • Scientific or graphical calculator

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Do **not** write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is **72**.
- The Printed Answer Book consists of **12** pages. The Question Paper consists of **8** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

• Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

5 9 6 1 4 6 5 5 9 7 2 3 3 4 7 5 6 6 6 7 8 Key: 6 4 means 6.4 m 8 0 3 4 8 5

(i) Find the median and interquartile range of the heights.

(ii) The heights, in metres to the nearest 0.1 m, of a random sample of trees of species B are given below.

7.6	5.2	8.5	5.2	6.3	6.3	6.8	7.2	6.7	7.3	5.4	7.5	7.4	6.0	6.7	

In the answer book, complete the back-to-back stem-and-leaf diagram. [2]

- (iii) Make two comparisons between the heights of the two species of tree. [2]
- 2 (a) The probability distribution of a random variable *W* is shown in the table.

w	0	2	4
$\mathbf{P}(W=w)$	0.3	0.4	0.3

Calculate Var(*W*).

1

(b) The random variable *X* has probability distribution given by

$$P(X = x) = k(x + 1)$$
 for $x = 1, 2, 3, 4$.

- (i) Show that $k = \frac{1}{14}$. [1]
- (ii) Calculate E(X). [3]

[3]

[3]

3 The table shows information about the numbers of people per household in 280 900 households in the northwest of England in 2001.

Number of people	1 2		3	4	5 or more	
Number of households	86900	92 500	45 000	37100	19400	

- (i) Taking '5 or more' to mean '5 or 6', calculate estimates of the mean and standard deviation of the number of people per household. [5]
- (ii) State the values of the median and upper quartile of the number of people per household. [2]
- 4 Each time Ben attempts to complete a crossword in his daily newspaper, the probability that he succeeds is $\frac{2}{3}$. The random variable X denotes the number of times that Ben succeeds in 9 attempts.
 - (i) Find

(a)	P(X=6),	[3]
(a)	1(21 0),	[5]

- (b) P(X < 6), [1]
- (c) E(X) and Var(X). [2]

Ben notes three values, X_1 , X_2 and X_3 , of X.

- (ii) State the total number of attempts to complete a crossword that are needed to obtain three values of *X*. Hence find $P(X_1 + X_2 + X_3 = 18)$. [4]
- 5 Tariq collected information about typical prices, $\pounds y$ million, of four-bedroomed houses at varying distances, *x* miles, from a large city. He chose houses at 10-mile intervals from the city. His results are shown below.

	x	10	20	30	40	50	60	70	80	
	У	1.2	1.4	1.2	0.9	0.8	0.5	0.5	0.3	
<i>n</i> = 8		$\Sigma x = 36$	0 Σ	$Lx^2 = 2040$)0	$\Sigma y = 6.8$	Σy^2	= 6.88	$\Sigma xy =$	= 24

- (i) Use an appropriate formula to calculate the product moment correlation coefficient, r, showing that -1.0 < r < -0.9. [3]
- (ii) State what this value of r shows in this context.
- (iii) Tariq decides to recalculate the value of r with the house prices measured in hundreds of thousands of pounds, instead of millions of pounds. State what effect, if any, this will have on the value of r. [1]
- (iv) Calculate the equation of the regression line of y on x.
- (v) Explain why the regression line of y on x, rather than x on y, should be used for estimating a value of x from a given value of y.

[1]

[3]

- 6 Fiona and James collected the results for six hockey teams at the end of the season. They then carried out various calculations using Spearman's rank correlation coefficient, r_s .
 - (i) Fiona calculated the value of r_s between the number of goals scored FOR each team and the number of goals scored AGAINST each team. She found that $r_s = -1$. Complete the table in the answer book showing the ranks.

Team	А	В	C	D	Е	F
Number of goals FOR (rank)	1	2	3	4	5	6
Number of goals AGAINST (rank)						

- [1]
- (ii) James calculated the value of r_s between the number of goals scored and the number of points gained by the 6 teams. He found the value of r_s to be 1. He then decided to include the results of another two teams in the calculation of r_s . The table shows the ranks for these two teams.

Team	G	Н
Number of goals scored (rank)	7	8
Number of points gained (rank)	8	7

Calculate the value of r_s for all 8 teams.

7 The table shows the numbers of members of a swimming club in certain categories.

	Male	Female
Adults	78	45
Children	52	п

It is given that $\frac{5}{8}$ of the female members are children.

(i) Find the value of *n*.

(ii) Find the probability that a member chosen at random is either female or a child (or both). [2]

The table below shows the corresponding numbers for an athletics club.

	Male	Female
Adults	6	4
Children	5	10

(iii) Two members of the athletics club are chosen at random for a photograph.

(a) Find the probability that one of these members is a female child and the other is an adult male. [2]

(b) Find the probability that exactly one of these members is female and exactly one is a child. [2]

[4]

[2]

- 8 A group of 8 people, including Kathy, David and Harpreet, are planning a theatre trip.
 - (i) Four of the group are chosen at random, without regard to order, to carry the refreshments.Find the probability that these 4 people include Kathy and David but not Harpreet. [3]
 - (ii) The 8 people sit in a row. Kathy and David sit next to each other and Harpreet sits at the left-hand end of the row. How many different arrangements of the 8 people are possible? [3]
 - (iii) The 8 people stand in a line to queue for the exit. Kathy and David stand next to each other and Harpreet stands next to them. How many different arrangements of the 8 people are possible? [3]
- **9** Each day Harry makes repeated attempts to light his gas fire. If the fire lights he makes no more attempts. On each attempt, the probability that the fire will light is 0.3 independent of all other attempts. Find the probability that

(i) the fire lights on the 5th attempt,	[2]
(ii) Harry needs more than 1 attempt but fewer than 5 attempts to light the fire.	[3]
If the fire does not light on the 6th attempt, Harry stops and the fire remains unlit.	
(iii) Find the probability that, on a particular day, the fire lights.	[3]

(iv) Harry's week starts on Monday. Find the probability that, during a certain week, the first day on which the fire lights is Wednesday.

END OF QUESTION PAPER

S1 June 2014 Mark Scheme Final (without introduction)

Note: "(3 sfs)" means "answer which rounds to ... to 3 sfs". If correct ans seen to \geq 3sfs, ISW for later rounding Penalise over-rounding only once in paper.

C	uestic	n	Answer	Answer Marks Guidanc		
С 1	(i)	on	Answer Median = 7.45 (m) IQR = 7.75 - 6.7 = 1.05 (m) allow 1.175 or 1.18 NOT 1.3	Marks B1 M1 A1	Guidan cao allow $7.775 - 6.6$ or $77.5 - 67$ or $77.75 - 66$ or $7.8 - 6.5$ even though this is an incorrect method or $78 - 65$ allow 10.5 or 11.75 or 11.8 but only if med = 74.5	These <u>pairs</u> of values only, and subtract, for M1 eg 7.45, 7.75 - 6.7 = 1.05 B1M1A1 7.45, 7.775 - 6.6 = 1.175 B1M1A1
				[3]		7.45, 7.8 - 6.5 = 1.3 $B1M1A0$ $7.45, 7.7 - 6.5 = 1.2$ $B1M0A0$ $7.45, 77.5 - 67 = 10.5$ $B1M1A0$ $74.5, 77.5 - 67 = 10.5$ $B0M1A1$ $74.5, 77.5 - 67 = 10.5$ $B0M1A1$ $74.5, 77.75 - 66 = 11.75$ $B0M1A1$ $74.5, 78 - 65 = 13$ $B1M1A0$ $74.5, 78 - 65 = 13$ $B0M1A0$ $74.5, 77 - 65 = 12$ $B0M0A0$

C	Questic	n	Answer	Marks	Guidan	nce		
1	(ii)	4 2 2 3 3 0	5 5 6			Allow a separate diag with leaves to left of stem.		
		8 7 7 4 3 2 6 5	6 7 7 8 8	B1*	correct digits in correct leaves, ignore order, allow one omitted or extra or misplaced or incorrect digit	If only a separate diag is drawn, with leaves to <u>right</u> of stem: all correct including order, alignment and key: B1		
			e correct diag including order and alignment	B1dep	key: eg 8 6 4 means 6.8 (<i>B</i>) and 6.4 (<i>A</i>) allow just 8 6 means 6.8 NOT 8 6 means 8.6 Allow 8 6 means 68, if consistent with (i)	If <u>all</u> digits are in correct rows and orders, & correct key, award this mark <u>unless</u> EITHER: 1. eg a 2 nd digit in one row is <u>clearly</u> aligned with a 3 rd digit in another OR 2. 1st, 3rd, 4th & 5th rows are <u>very</u>		
				[2]		different lengths, eg because of crossing out and replacement		
1	(iii)		rect comment on size: B1. One correct working; mark the statements or		ent on spread or shape: B1. The following are ex Allow "First set" or "Right" for A, "Sec	kamples only.		
			• <u>overall</u> ore taller trees or fewer shorter gher median (mean, ave, medium)	B1	B shorter <u>overall</u> B has fewer taller trees or more shorter B has lower median (mean, ave, medium)	NOT A higher than B NOT B has shorter trees than A Allow just quoting the two medians, even if wrong, so long as med of A is gter than med of B. Similarly if quote IQRs		
		B more s B has lar Ranges o A is near A is negr	evenly spread or distributed spread out ger range or IQR or sd of both are similar rer to normal atively skewed (unique) mode, or modal class or peak; (B doesn't)	B1	A less evenly spread or distributed A less spread out A has smaller range or IQR or sd Allow A's heights are more consistent Not other comment about skew Ignore any other reference to mode or most common	NOT any reference to outliers NOT any reference to sample size NOT any reference to indiv trees NOT two comments on size NOT two comments on spread		
				[2]	Ignore all else even if incorrect	eg highest on both is 8.5 B0		

Q	uestic	on	Answer	Marks	Guidan	ice
2	(a)		$(0^2 \times 0.3) + 2^2 \times 0.4 + 4^2 \times 0.3$	M1	last two terms correct. NOT eg \div 6 or \div 3	$2^{2} \times 0.3 + (0) + 2^{2} \times 0.3$ M2 1st or 3rd term correct M1
			-2^{2} or -4	M1	allow $-(any number)^2$, dep +ve result	
			= 2.4	A1		÷ 3 M0M0A0
				[3]		
2	(b)	(i)	2k + 3k + 4k + 5k = 1 oe	B1	or $14k = 1$ oe "= 1" is essential	NOT just $2 + 3 + 4 + 5 = 14$ so $k = \frac{1}{14}$
			$(k = \frac{1}{14} \mathbf{AG})$			Allow verification, eg stating that $\frac{2}{14} + \frac{3}{14} + \frac{4}{14} + \frac{5}{14} = 1$
				[1]		$\frac{1}{14} + \frac{1}{14} + \frac{1}{14} + \frac{1}{14} - 1$
2	(b)	(ii)	$\frac{2}{14}, \frac{3}{14}, \frac{4}{14}, \frac{5}{14}$ or $\frac{2}{14}, \frac{6}{14}, \frac{12}{14}, \frac{20}{14}$	B1	\geq 3 correct	2k, 6k,12k, 20k B1
			Σxp	M1	\geq 3 correct terms added	2k+6k+12k+20k or $40k$ M1
			$=\frac{20}{7}$ or $2\frac{6}{7}$ or 2.86 (3 sf) oe, eg $\frac{40}{14}$	A1	SC 1 × $\frac{1}{14}$ + 2 × $\frac{2}{14}$ + 3 × $\frac{3}{14}$ + 4 × $\frac{4}{14}$ (=2.143)	÷ 4 M0A0
					B0M1A0	
				[3]		

Q	Question		Answer	Marks	Guidance		
3	(i)	Use of 5 or 6 instead of 5.5 for last value of <i>x</i> : all M-marks can be scored, but no A-marks. (ans: 1.40) Use of 5 and 6 instead of 5.5 (probably with freqs 19400/2) could lead to correct mean M1A1, bu					
			$\frac{\Sigma fx}{\Sigma f} \text{ attempted} \qquad (= \frac{662000}{280900})$ = 2.36 (3 sf) $\frac{\Sigma fx^2}{\Sigma f} \text{ attempted} \qquad (= \frac{2042350}{280900} = 7.270737)$	M1 A1 M1	3 terms of Σfx correct and $\div \Sigma f$ Allow incorrect Σf NOT Σx 3 terms of Σfx^2 correct and $\div \Sigma f$ Allow incorrect Σf NOT Σx	$\frac{\Sigma f (x-\overline{x})^2}{\Sigma f}$ 3 terms of num correct and $\div \Sigma f$ M2 (86900×1.36 ² +92500×0.36 ² +45000×0.64 ²	
			- "2.36" ² (= 1.70 to 1.72, 3 sf)	M1	dep +ve result ÷ 5 or ÷ 6 M0M0A0	+ $37100 \times 1.64^2 + 19400 \times 3.1^2$), $(\frac{482210.64}{280900})$ 2 terms of num correct and $\div \Sigma f M1$ Allow incorrect Σf but NOT if $\Sigma f = \Sigma x$ NB $$ not requ'd for M1M1	
			s.d. = 1.31 or 1.30 (3 sf)	A1 [5]	allow 1.3	Correct answer(s) without working score full marks	
3	(ii)		2 3	B1 B1 [2]	allow IQR = $3 - 1 = 2$, ie UQ = 3 implied	Ignore working for both, even if Incorrect NB 3, 2 B0B0 unless labelled correctly	

6	Question		Answer	Marks	Guidan	се
4	4 If $\frac{2}{3}$ is inte		erpreted consistently as 0.6 or 0.66 or 0.6	7 or 0.7, max n	narks: (i)(a) M1M1A0 (i)(b) B0 (i)(c) B1ft	B1ft (ii) B1M1M1A0
4	(i)	(a)	Binomial seen or implied	M1	by use of table or ${}^{9}C_{6}$ or $(\frac{2}{3})^{p}(\frac{1}{3})^{q}(p+q=9)$	Eg 0.6228 seen
			0.6228 - 0.3497	M1	${}^{9}C_{6}(\frac{1}{3})^{3}(\frac{2}{3})^{6}$	
			= 0.273 (3 sf)	A1	<u>1792</u> 6561	
				[3]		
4	(i)	(b)	0.3497 or 0.350 (3 sf)	B1	NB 0.3498 (from 0.6228 - 0.273) rounds to 0.350 so B1	
				[1]		
4	(i)	(C)	6	B1ft		
			2	B1ft		NB 2, 6 B0B0 unless labelled correctly
				[2]		
4	(ii)		27 seen	B1	not necessarily in a statement	
			B(27, $\frac{2}{3}$) seen or implied	M1		
			$^{27}C_{18}(\frac{1}{3})^{9}(\frac{2}{3})^{18}$	M1	or attempt eg $P(X_1 = 1) \times P(X_2 = 8) \times P(X_3 = 9),$ $P(X_1 = 2) \times P(X_2 = 7) \times P(X_3 = 9),$ $P(X_1 = 3) \times P(X_2 = 6) \times P(X_3 = 9),$ etc	NB P($X_1 = 6$) × P($X_2 = 6$) × P($X_3 = 6$) = 0.273 ³ = 0.0203 M0M0A0
			= 0.161 (3 sf)	A1 [4]	$X_{1} = 3$ × $Y_{1} = 3$ × $Y_{2} = 0$ × $Y_{3} = 9$, etc ≥ 3 sets with $X_{1} + X_{2} + X_{3} = 18$ (not nec'y added) M1	$\frac{55}{729}$ (= 0.0754) M0M0A0

C	Question	Answer	Marks	Guidan	се
5	(i)	$S_{xx} = 20400 - \frac{360^2}{8} \qquad (= 4200)$ $S_{yy} = 6.88 - \frac{6.8^2}{8} \qquad (= 1.1)$			
		$S_{xy} = 241 - \frac{360 \times 6.8}{8} \qquad (=-65)$	M1	Correct sub in a correct S formula	
		$r = \frac{"-65"}{\sqrt{"4200" \times "1.1"}}$	M1	Correct sub in 3 correct <i>S</i> formulae and a correct <i>r</i> formula	
		= -0.956 (3 sf)	A1 [3]	Correct ans with no working M2A1	Ignore comment about $-1 < r < -0.9$
5	(ii)	eg As you move further away, prices drop	B1	High prices go with short distances oe	Both variables must be in context ; miles & £ enough
				Allow " <u>Strong</u> (or high or good or equiv) <u>neg</u> corr'n between price and distance"	Ignore all else, even if incorrect NOT just <u>neg</u> corr'n between price & dist
			[1]		
5	(iii)	None	B1 [1]		Ignore all else, even if incorrect
5	(iv)	$b = \frac{"-65"}{"4200"} \qquad (= -0.0154762)$	M1	ft their S_{xy} & S_{xx} from (i) for M-marks only	or fresh start correct method
		$Y - \frac{6.8}{8} = "-0.0154762"(x - \frac{360}{8}) $ oe	M1	or $a = \frac{6.8}{8} + \text{``0.0154762''} \times \frac{360}{8}$ oe	
		y = -0.0155x + 1.55 (3 sf) oe	A1	allow $y = -0.015x + 1.5$	Must have " $y =$ "
		or $y = \frac{433}{280} - \frac{13}{840}x$ oe		(or figs which round to these)	
		280 840		(NOT $y = -0.016x + 1.6$	Allow figures in equn which round to
			[3]	NOT $y = -0.02x + 1.5$) Correct ans with no working M2A1	the correct figures to <u>either</u> 3 sf <u>or</u> 2 sf, even if they result from arith errors.
5	(v)	Values of <i>x</i> are chosen beforehand	B1	<i>x</i> is fixed or given or set or predetermined oe	Not " <i>x</i> is constant."
		or <i>x</i> is independent or controlled	[1]		Not just " <i>y</i> depends on <i>x</i> " Ignore all other, even if incorrect

4732

Mark Scheme

C	Question		Answer	Marks	Guidan	ce
6	(i)		654321	B1		
				[1]		
6	(ii)		$\Sigma d^2 = 0$ for first 6 teams	M1	May be implied by use of $\Sigma d^2 = 2$	
			$\Sigma d^2 = 2$	B1		
			$1 - \frac{6\sum d^2}{8(8^2 - 1)}$	M1	ft their $\Sigma d^2 (\neq 0)$	using ranks from (i) can score 2nd M1 only
			$=\frac{41}{42}$ or 0.976 (3 sf)	A1		
			42	[4]		
7	(i)		$\frac{n}{n+45} = \frac{5}{8} \text{ or } n: 45 = 5:3 \text{ or } \frac{3}{8}: 45 = \frac{5}{8}:n$	M1	$\frac{3F}{8} = 45 \& n = \frac{5}{8} \times F; 45 \times \frac{8}{3} - 45; 45 \times \frac{8}{3} \times \frac{5}{8}$	correct first step involving <i>n</i> or complete correct method for finding <i>n</i>
			8			
			n = 75	A1		
	(11)			[2]		
	(ii)		$\frac{45+"75"+52}{45+"75"+52+78}$ alone oe	M1	1 - $\frac{78}{45 + 75' + 52 + 78}$ oe or $\frac{250'' - 78}{250''}$ oe	$\frac{45+"75"}{"250"} + \frac{52+"75"}{"250"} - \frac{"75"}{"250"}$
					Completely correct method	or 0.48 + 0.508 - 0.48×0.508
			86 172 0.000.00 0		ft their integer answer to (i)	
			$=\frac{86}{125}$ or $\frac{172}{250}$ or 0.688 (3 sf) oe	A1ft	eg if their (i) is 28, ans 0.616 or $\frac{125}{203}$ M1A1ft	
					$\frac{1}{203}$ with the first 20, and 0.010 of $\frac{1}{203}$ with the	
-	()			[2]		
7	(iii)	(a)	$\frac{10}{25} \times \frac{6}{24} \text{ or } \frac{6}{25} \times \frac{10}{24} \text{ seen } (\text{or } \frac{2}{5} \times \frac{1}{4} \text{ or } \frac{6}{25} \times \frac{5}{12})$ oe	M1	or $\frac{10}{25} \times \frac{6}{25} + \frac{6}{25} \times \frac{10}{25}$ or $\frac{10}{25} \times \frac{6}{25} \times 2$ oe	ie allow M1 if '2×' is omitted OR if 25 instead of 24, but not both errors
					$\frac{{}^{10}C_1 \times {}^6C_1}{{}^{25}C_2}$ oe or $\frac{10 \times 6}{300}$ oe	allow M1 for correct num or denom
			$\left(\frac{10}{25} \times \frac{6}{24} + \frac{6}{25} \times \frac{10}{24} \text{ or } \frac{10}{25} \times \frac{6}{24} \times 2\right)$			
			$=\frac{1}{5}$	A1		
				[2]		NB long methods <u>may</u> be correct, eg
				[-]		$(\frac{14}{25} \times \frac{10}{14}) \times (\frac{11}{24} \times \frac{6}{11})$ same as $\frac{10}{25} \times \frac{6}{24}$

Mark Scheme

June 2014

Question		Answer	Marks	Guidance		
(iii)	(b)	FA + MC or $FC + MA$				
		<u>Either</u> $\frac{4}{25} \times \frac{5}{24} \times 2$		Allow $\frac{10}{25} \times \frac{6}{25} \times 2$ or $\frac{4}{25} \times \frac{5}{25} \times 2$	ie allow 25 instead of 24 AND	
		or $\frac{10}{10} \times \frac{6}{5} \times 2$ NB ft their	M1	or $\frac{10}{10} \times \frac{6}{6} + \frac{4}{10} \times \frac{5}{10}$ or $\frac{10}{10} \times \frac{6}{6} + \frac{4}{10} \times \frac{5}{10}$	allow one case <u>with $\times 2$</u> or both cases <u>without $\times 2$</u>	
		25 21	1011		or both cases <u>without</u> ~ 2	
		(ind)		NB It their (III)(a)	ie allow 25 <u>and</u> one of these two errors cf scheme for (iii)(a)	
		$\left(\frac{4}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15}\right)$				
				$\frac{{}^{10}C_1 \times {}^{6}C_1}{{}^{25}C_2} + \frac{{}^{4}C_1 \times {}^{5}C_1}{{}^{25}C_2} \text{ oe } \text{ or } \frac{60+20}{300} \text{ oe}$	allow M1 if one of these fracts correct	
					NB ${}^{25}C_2$ in denom NOT M1 , cf (iii)(a)	
		$=\frac{4}{15}$ or 0.267 (3 sf)	A1	cao		
			[2]		NB see note on long methods in 7(iiia)	
(i)		${}^{5}C_{2}$ oe seen anywhere or num= 10 alone	M1	$\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5}$ or $\frac{20}{1680}$ or $\frac{1}{84}$ oe seen	alone or $\times \dots$ eg $\frac{2}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5}$ M1	
		${}^{5}C_{2}$ on or ${}^{5}C_{2} \times 4!$ on all correct	M1	$\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times {}^{4}C_{2} \times 2 \text{ or } \frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times 4! \div 2 \text{ oe}$	$\frac{4}{8} \times \frac{3}{7} \times \frac{4}{6}$ oe all correct M2	
		$\frac{1}{^{8}C_{4}}$ or or $\frac{1}{^{8}P_{4}}$ or an correct		or $\frac{1}{8} \times \frac{1}{7} \times \frac{5}{6} \times \frac{4}{5} \times 12$ oe all correct	NB $\frac{\text{incorrect}}{{}^{8}C}$ does not score	
					$^{\circ}C_{4}$	
		$=\frac{1}{7}$ or 0.143 (3 sf)	A1	Correct ans scores M1M1A1 regardless of method.		
			[3]			
(ii)		$6! \times 2$ alone or $5! \times 6 \times 2$ alone oe	M2	M1 for 6! or $5! \times 6$ or ${}^{6}P_{5}$ or 720 seen	M1 for 7! × 2 alone	
		- 1440	A 1	NB 5! scores M0 unless $5! \times 6$ or $5! \times 12$	NB 7! scores M0 unless $7! \times 2$ alone	
		- 1440				
	(iii)	(iii) (b)	(ii) (b) FA + MC or FC + MA Either $\frac{4}{25} \times \frac{5}{24} \times 2$ or $\frac{10}{25} \times \frac{6}{24} \times 2$ NB ft their (iiia) $(\frac{4}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $= \frac{4}{15}$ or 0.267 (3 sf) (i) $\frac{{}^{5}C_{2}}{{}^{8}C_{4}}$ oe seen anywhere or num= 10 alone $\frac{{}^{5}C_{2}}{{}^{8}C_{4}}$ oe or $\frac{{}^{5}C_{2} \times 4!}{{}^{8}P_{4}}$ oe all correct $= \frac{1}{7}$ or 0.143 (3 sf)	(ii) (b) FA + MC or FC + MA <u>Either</u> $\frac{4}{25} \times \frac{5}{24} \times 2$ <u>or</u> $\frac{10}{25} \times \frac{6}{24} \times 2$ NB ft their (iiia) $(\frac{4}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $= \frac{4}{15}$ or 0.267 (3 sf) (i) $5C_2$ oe seen anywhere or num= 10 alone $\frac{5C_2}{8C_4}$ oe or $\frac{5C_2 \times 4!}{8P_4}$ oe all correct M1 $= \frac{1}{7}$ or 0.143 (3 sf) (ii) $6! \times 2$ alone or $5! \times 6 \times 2$ alone oe M2	(iii) (b) FA + MC or FC + MA Either $\frac{4}{25} \times \frac{5}{24} \times 2$ or $\frac{10}{25} \times \frac{6}{24} \times 2$ NB ft their (iiia) Allow $\frac{10}{25} \times \frac{6}{24} \times 2$ or $\frac{4}{25} \times \frac{5}{25} \times 2$ or $\frac{10}{25} \times \frac{6}{24} + \frac{4}{25} \times \frac{5}{24}$ or $\frac{10}{25} \times \frac{6}{25} + \frac{4}{25} \times \frac{5}{25}$ NB ft their (iii)(a) $(\frac{4}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{4}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{4}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{4}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{4}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{4}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{4}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{4}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{4}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{10}{21} \times \frac{6}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{10}{21} \times \frac{6}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{10}{21} \times \frac{6}{25} \times \frac{5}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{10}{21} \times \frac{6}{25} \times \frac{6}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{10}{21} \times \frac{6}{25} \times \frac{6}{24} \times 2 + \frac{10}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{10}{21} \times \frac{1}{25} \times \frac{6}{24} \times \frac{1}{25} \times \frac{6}{24} \times 2 = \frac{1}{5} + \frac{1}{15})$ $(\frac{10}{21} \times \frac{1}{25} \times \frac{6}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{4}{5} \times \frac{1}{5} \times \frac{6}{5} \times \frac{4}{5} \times \frac{1}{5} \times 1$	

0	Question	Answer	Marks	Guidance		
8	(iii)	$6! \times 4$ alone or $6! \times 2 \times 2$ alone	M2	M1 for 6! or ${}^{6}P_{5}$ or 720 seen or 5! × 6 seen but NOT from 5!×3!	5!: M0 unless 5!×6 or 5!×12 or 5!×24	
		= 2880	A1 [3]			
9	If 0.3 a	nd 0.7 are interchanged consistently through a		all M-marks can be scored, but no A-marks.		
	If 1 – 0	0.3 is calculated incorrectly (eg 0.6 or 0.66 or $\frac{2}{3}$	$\frac{2}{3}$) consistent	ly, lose the A-mark in (i) but all other marks	are available on ft, so long as $0 < ans < 1$.	
9	(i)	$0.7^4 \times 0.3$ alone	M1			
		$= 0.0720 (3 \text{ sf}) \text{ or } \frac{7203}{100000} \text{ oe}$	A1	allow 0.072		
		2 2	[2]			
9	(ii)	$(0.7 + 0.7^2 + 0.7^3) \times 0.3$	M2	M1 for 1 term omitted, wrong or extra. must add terms, not mult.	$(1 - 0.7^4) - 0.3 \text{ or } 0.7599 - 0.3 \text{ M2}$ $(1 - 0.7^4) - \dots \text{ or } 1 - 0.3 - \dots \text{ M1}$ $0.7599 - \dots \text{ or } 0.7 - \dots \text{ M1}$ Just $1 - 0.7^4$ or $1 - 0.3$: M0 $(1 + 0.7 + 0.7^2 + 0.7^3) \times 0.3 - 0.3 \text{ M2}$ 1 term omitted, wrong or extra M1	
		$= 0.4599 \text{ or } 0.460 \text{ (3sf) or } \frac{4599}{10000} \text{ oe}$	A1	Allow 0.46		
9	(iii)	1-0.7 ⁶	[3] M2	M1 for 0.7^6 alone or $1 - 0.7^5$ (= 0.832) or $1 - 0.7^7$ (= 0.918)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		= 0.882 (3 sf)	A1 [3]			

(Question		Answer	Marks	Guidance	
9	(iv)		$(1 - "0.882")^2 \times "0.882"$ oe	M1	or $(0.7^6)^2 \times (1 - 0.7^6)$ or $0.1176^2 \times (1 - 0.1176)$	Not $0.7^2 \times 0.3$
					or $(0.7^6)^2$ × their "0.882"	
					or $0.3(0.7^{12}+(0.7^{13}+0.7^{14}++0.7^{17}))$	Completely correct method
			= 0.0122 (3 sf)	A1ft	allow 0.0123	ft their "0.882" except if 0.3 or 0.7
				[2]		